Spam campaign detection, analysis, and investigation

نویسندگان

  • Son Dinh
  • Taher Azeb
  • Francis Fortin
  • Djedjiga Mouheb
  • Mourad Debbabi
چکیده

Spam has been a major tool for criminals to conduct illegal activities on the Internet, such as stealing sensitive information, selling counterfeit goods, distributing malware, etc. The astronomical amount of spam data has rendered its manual analysis impractical. Moreover, most of the current techniques are either too complex to be applied on a large amount of data or miss the extraction of vital security insights for forensic purposes. In this paper, we elaborate a software framework for spam campaign detection, analysis and investigation. The proposed framework identifies spam campaigns on-the-fly. Additionally, it labels and scores the campaigns as well as gathers various information about them. The elaborated framework provides law enforcement officials with a powerful platform to conduct investigations on cyber-based criminal activities. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spam Campaign Cluster Detection Using Redirected URLs and Randomized Sub-Domains

A substantial majority of the email sent everyday is spam. Spam emails cause many problems if someone acts or clicks on the link provided in the email body. The problems may include infecting users personal machine with malware, stealing personal information, capturing credit card information, etc. Since spam emails are generated as a part of a very limited numbers of spam campaigns, it is usef...

متن کامل

An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network

In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...

متن کامل

Stressing Out: Bitcoin "Stress Testing"

In this paper, we present an empirical study of a recent spam campaign (a “stress test”) that resulted in a DoS attack on Bitcoin. The goal of our investigation being to understand the methods spammers used and impact on Bitcoin users. To this end, we used a clustering based method to detect spam transactions. We then validate the clustering results and generate a conservative estimate that 385...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Digital Investigation

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015